A special version of the moments is the set of central moments, the n-th central moment defined as \begin{equation*} \langle (x-\langle x\rangle )^n\rangle \equiv \int\! (x-\langle x\rangle)^n p(x)\,dx \end{equation*} The zero-th and first central moments are both trivial, equal 1 and 0 , respectively. But the second central moment, known as the variance of p , is of particular interest. For the stochastic variable X , the variance is denoted as \sigma^2_X or \mathrm{Var}(X) \begin{align*} \sigma^2_X &=\mathrm{Var}(X) = \langle (x-\langle x\rangle)^2\rangle = \int (x-\langle x\rangle)^2 p(x)dx\\ & = \int\left(x^2 - 2 x \langle x\rangle^{2} +\langle x\rangle^2\right)p(x)dx\\ & = \langle x^2\rangle\rangle - 2 \langle x\rangle\langle x\rangle + \langle x\rangle^2\\ & = \langle x^2 \rangle - \langle x\rangle^2 \end{align*} The square root of the variance, \sigma =\sqrt{\langle (x-\langle x\rangle)^2\rangle} is called the standard deviation of p . It is the RMS (root-mean-square) value of the deviation of the PDF from its mean value, interpreted qualitatively as the "spread" of p around its mean.