Our estimate of the true average \( \mu_{X} \) is the sample mean \( \langle X_m \rangle \)
If the observables are uncorrelated, then the covariance is zero and we obtain a total variance which agrees with the central limit theorem. Correlations may often be present in our data set, resulting in a non-zero covariance. The first term is normally called the uncorrelated contribution. Computationally the uncorrelated first term is much easier to treat efficiently than the second. We just accumulate separately the values \( x^2 \) and \( x \) for every measurement \( x \) we receive. The correlation term, though, has to be calculated at the end of the experiment since we need all the measurements to calculate the cross terms. Therefore, all measurements have to be stored throughout the experiment.