Loading [MathJax]/extensions/TeX/boldsymbol.js

 

 

 

Normal Distribution

With \begin{equation*} x=r\cos{(\theta)}=\sqrt{2u}\cos{(\theta)}, \end{equation*} and \begin{equation*} y=r\sin{(\theta)}=\sqrt{2u}\sin{(\theta)}, \end{equation*} we can obtain new random numbers x,y through \begin{equation*} x=\sqrt{-2\ln{(1-x')}}\cos{(\theta)}, \end{equation*} and \begin{equation*} y=\sqrt{-2\ln{(1-x')}}\sin{(\theta)}, \end{equation*} with x'\in [0,1] and \theta \in 2\pi [0,1] .