Loading [MathJax]/extensions/TeX/boldsymbol.js

 

 

 

Exponential Distribution

This gives us the new random variable y in the domain y \in [0,\infty) determined through the random variable x \in [0,1] generated by functions like ran0 .

This means that if we can factor out \exp{(-y)} from an integrand we may have \begin{equation*} I=\int_0^{\infty}F(y)dy=\int_0^{\infty}\exp{(-y)}G(y)dy \end{equation*} which we rewrite as \begin{equation*} \int_0^{\infty}\exp{(-y)}G(y)dy= \int_0^{1}G(y(x))dx\approx \frac{1}{N}\sum_{i=1}^NG(y(x_i)), \end{equation*} where x_i is a random number in the interval [0,1] .