For the uniform distribution, the mean value \( \mu \) is then $$ \begin{equation*} \mu=\langle x\rangle=\frac{1}{2} \end{equation*} $$ while the standard deviation is $$ \begin{equation*} \sigma=\sqrt{\langle x^2\rangle-\mu^2}=\frac{1}{\sqrt{12}}=0.2886. \end{equation*} $$