Loading [MathJax]/extensions/TeX/boldsymbol.js

 

 

 

Importance Sampling

The algorithm for this procedure is

  • Use the uniform distribution to find the random variable y in the interval [0,1]. The function p(x) is a user provided PDF.
  • Evaluate thereafter
\begin{equation*} I=\int_a^b F(x) dx =\int_a^b p(x)\frac{F(x)}{p(x)} dx, \end{equation*} by rewriting \begin{equation*} \int_a^b p(x)\frac{F(x)}{p(x)} dx = \int_{\tilde{a}}^{\tilde{b}}\frac{F(x(y))}{p(x(y))} dy, \end{equation*} since \begin{equation*} \frac{dy}{dx}=p(x). \end{equation*}
  • Perform then a Monte Carlo sampling for
\begin{equation*} \int_{\tilde{a}}^{\tilde{b}}\frac{F(x(y))}{p(x(y))} dy\approx \frac{1}{N}\sum_{i=1}^N\frac{F(x(y_i))}{p(x(y_i))}, \end{equation*} with y_i\in [0,1] ,
  • and evaluate the variance as well.