An example of applications of the Poisson distribution could be the counting of the number of \alpha -particles emitted from a radioactive source in a given time interval. In the limit of n\rightarrow \infty and for small probabilities y , the binomial distribution approaches the Poisson distribution. Setting \lambda = ny , with y the probability for an event in the binomial distribution we can show that \begin{equation*} \lim_{n\rightarrow \infty}\left(\begin{array}{c} n \\ x\end{array}\right)y^x(1-y)^{n-x} e^{-\lambda}=\sum_{x=1}^{\infty}\frac{\lambda^x}{x!} e^{-\lambda}. \end{equation*}