The following simple Python code plots the distribution of the produced random numbers using the linear congruential RNG employed by Python. The trend displayed in the previous table is seen rather clearly.
xxxxxxxxxx
#!/usr/bin/env python
import numpy as np
import matplotlib.mlab as mlab
import matplotlib.pyplot as plt
import random
# initialize the rng with a seed
random.seed()
counts = 10000
values = np.zeros(counts)
for i in range (1, counts, 1):
values[i] = random.random()
# the histogram of the data
n, bins, patches = plt.hist(values, 10, facecolor='green')
plt.xlabel('$x$')
plt.ylabel('Number of counts')
plt.title(r'Test of uniform distribution')
plt.axis([0, 1, 0, 1100])
plt.grid(True)
plt.show()