Loading [MathJax]/extensions/TeX/boldsymbol.js

 

 

 

Meet the covariance, uncorrelated events

This is easy to show, keeping in mind the linearity of the expectation value. Consider the stochastic variables X_i and X_j , ( i\neq j ) \begin{align*} \mathrm{Cov}(X_i,\,X_j) &= \langle (x_i-\langle x_i\rangle)(x_j-\langle x_j\rangle)\rangle\\ &=\langle x_i x_j - x_i\langle x_j\rangle - \langle x_i\rangle x_j + \langle x_i\rangle\langle x_j\rangle\rangle\\ &=\langle x_i x_j\rangle - \langle x_i\langle x_j\rangle\rangle - \langle \langle x_i\rangle x_j \rangle + \langle \langle x_i\rangle\langle x_j\rangle\rangle\\ &=\langle x_i x_j\rangle - \langle x_i\rangle\langle x_j\rangle - \langle x_i\rangle\langle x_j\rangle + \langle x_i\rangle\langle x_j\rangle\\ &=\langle x_i x_j\rangle - \langle x_i\rangle\langle x_j\rangle \end{align*} If X_i and X_j are independent, we get \langle x_i x_j\rangle = \langle x_i\rangle\langle x_j\rangle=\mathrm{Cov}(X_i, X_j) = 0\ \ (i\neq j).