In addition to the average value \langle f \rangle the other important quantity in a Monte-Carlo calculation is the variance \sigma^2 and the standard deviation \sigma . We define first the variance of the integral with f for a uniform distribution in the interval x \in [0,1] to be \begin{equation*} \sigma^2_f=\sum_{i=1}^N(f(x_i)-\langle f\rangle)^2p(x_i), \end{equation*} and inserting the uniform distribution this yields \begin{equation*} \sigma^2_f=\frac{1}{N}\sum_{i=1}^Nf(x_i)^2- \left(\frac{1}{N}\sum_{i=1}^Nf(x_i)\right)^2, \end{equation*} or \begin{equation*} \sigma^2_f=\left(\langle f^2\rangle - \langle f \rangle^2\right). \end{equation*}